
Document Object Model Web Storage

Introduction
What is DOM Storage?

window.sessionStorage
window.localStorage

The Storage Object
Web Storage Events

onstorage
onstoragecommit
Security and Privacy
Top-Level Browsing Context and Hostname
Origin Determines Storage Limits
Clearing the Storage Areas

References
Further Reading

Introduction
The Web Storage API includes two related mechanisms for persisting client-side data in a secure manner using the Document Object Model
(DOM), sessionStorage and localStorage. These objects were introduced in Windows Internet Explorer 8.

 Note: For versions of Windows Internet Explorer prior to version 8, persistent data storage is implemented by the behavior.userData

DOMstore entries in NetAnalysis 1.5x

What is DOM Storage?
Web Storage is often compared to HTTP cookies. Like cookies, Web developers can store per-session or domain-specific data as name/value pairs on
the client using Web Storage. However, unlike cookies, Web Storage makes it easier to control how information stored by one window is visible to another.

For example, a user might open two browser windows to buy airline tickets for two different flights. However, if the airline's Web application uses cookies to
store its session state, information could "leak" from one transaction into the other, potentially causing the user to buy two tickets for the same flight without
noticing. As applications become more capable of offline behaviours, such as storing values locally for later return to the server, the potential for this sort
of information "leak" becomes more prevalent.

Web Storage also offers significantly more disk space than cookies. In Internet Explorer, cookies can store only 4 kilobytes (KB) of data. This byte total
can be one name/value pair of 4 KB, or it can be up to 20 name/value pairs that have a total size of 4 KB. By comparison, Web Storage provides roughly
10 megabytes (MB) for each storage area.

Functionally, client storage areas are quite different from cookies. Web Storage doesn't transmit values to the server with every request as cookies do, nor
does the data in a local storage area ever expire. And unlike cookies, it is easy to access individual pieces of data using a standard interface that has
growing support among browser vendors.

window.sessionStorage

Session storage is designed for scenarios where the user is carrying out a single transaction. The attribute of the object maintains sessionStorage window
key/value pairs for all pages loaded during the lifetime of a single tab (for the duration of the top-level browsing context). For example, a page might have
a check box that the user selects to indicate that he wants insurance.

<label>
 <input type="checkbox" onchange="sessionStorage.insurance = checked">
 I want insurance on this trip.
</label>

A later page could then check, from script, whether the user had selected the check box.

#
http://msdn.microsoft.com/en-us/library/cc197020(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms535873(v=vs.85).aspx

if (sessionStorage.insurance) { ... }

The object supports expando properties ('insurance' in the preceding example). If the property name does not exist, a key/value pair is Storage
automatically created to hold it. Note that key/value pairs are always stored as strings. Different data types such as numbers, Boolean values, and
structured data must be converted to strings before persisting to a storage area.

After a value has been saved to , it can be retrieved by script running in another page in the same context. When another document is sessionStorage
loaded, sessionStorage is initialised from memory for same-origin URLs. (See section for more information.)Security and Privacy

 Note: Although it is allowed by the , Internet Explorer 8 does not resume after browser crash recovery.HTML5 (Working Draft) sessionStorage

window.localStorage

The local storage mechanism spans multiple windows and persists beyond the current session. The attribute provides persistent storage localStorage
areas for domains. It allows Web applications to store nearly 10 MB of user data, such as entire documents or a user's mailbox, on the client for
performance reasons.

For example, a Web site can display a count of how many times the user has visited a page with the following script.

<p>
 You have viewed this page
 an untold number of
 time(s).
</p>
<script>
 var storage = window.localStorage;
 if (!storage.pageLoadCount) storage.pageLoadCount = 0;
 storage.pageLoadCount = parseInt(storage.pageLoadCount, 10) + 1;
 document.getElementById('count').innerHTML = storage.pageLoadCount;
</script>

 Note: Before incrementing pageLoadCount it must first be converted to a number with the .parseInt Method (JScript 5.6)

Each domain and subdomain has its own separate local storage area. Domains can access the storage areas of subdomains, and subdomains can access
the storage areas of parent domains. For example, is accessible to and any of its subdomains. The localStorage['example.com'] example.com
subdomain is accessible to , but not to other subdomains, such as .localStorage['www.example.com'] example.com mail.example.com

The Storage Object
The following properties and methods are supported by both session and local storage objects.

Topic Contents

clear Removes all key/value pairs from the Web Storage area.

constructor Returns a reference to the constructor of an object.

getItem Retrieves the current value associated with the Web Storage key.

key Retrieves the key at the specified index in the collection.

length Retrieves the length of the key/value list.

remainingSpace Retrieves the remaining memory space, in bytes, for the storage object.

removeItem Deletes a key/value pair from the Web Storage collection.

setItem Sets a key/value pair.

Web Storage Events

http://msdn.microsoft.com/en-us/library/cc197063(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197020(v=vs.85).aspx
http://go.microsoft.com/fwlink/p/?linkid=203771
http://msdn.microsoft.com/en-us/library/cc197020(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc848902(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/x53yedee(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc288131(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc848898(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197039(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197042(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc304101(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197016(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197047(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197050(v=vs.85).aspx

Internet Explorer fires events when data in a storage area is updated, so that information can synchronized between multiple instances of the browser or
tabs.

The following events are supported:

onstorage
onstoragecommit

onstorage

The event is fired in a when a storage area changes. All documents sharing the same session context, and those that are currently onstorage document
displaying a page from the same domain or subdomain where local storage is being committed, receive the event. If the target object is not document
currently active, Internet Explorer does not fire any events.

onstoragecommit

Internet Explorer uses XML files to store local storage. The event fires when a local storage is written to disk.onstoragecommit

Security and Privacy

The data stored in local storage is much more public than that stored in cookies, which can be limited to a certain path within a domain. Even picking a
hard-to-guess key won't provide any privacy because the object provides a way to enumerate them.Storage

Here are some things to consider:

Top-Level Browsing Context and Hostname
Origin Determines Storage Limits
Clearing the Storage Areas

Top-Level Browsing Context and Hostname

Access to the session storage area is restricted by the top-level browsing context. In Internet Explorer, a new browsing context is created for every
tab. Script running in one top-level browsing context has no access to storage created in another. Sites can add data to the session storage, and it will be
accessible to opened in the same window. any page from that hostname

 Note The port and protocol/scheme are not evaluated as a part of this check.:

Origin Determines Storage Limits

Disk quota limits are imposed against the domain of the page that sets the value, rather than the domain where the value is being set. This prevents
malicious scripts from using up the storage quota of a related domain. It also prevents such scripts from using random subdomains to store unrestricted
amounts of data.

Storage size is calculated as the total length of all key names and values, and a single storage area can contain up to 10 million bytes. The remainingSpace
property is used to determine the available storage space.

Clearing the Storage Areas

Session state is released as soon as the last window to reference that data is closed. However, users can clear storage areas at any time by selecting Dele
 from the menu in Internet Explorer, selecting the check box, and clicking . This clears session and local storage te Browsing History Tools Cookies OK

areas for all domains that are not in the Favorites folder and resets the storage quotas in the registry. Clear the check box to Preserve Favorite Site Data
delete all storage areas, regardless of source.

To delete key/value pairs from a storage list, iterate over the collection with or use to remove all items at once. Keep in mind that removeItem clear
changes to a local storage area are saved to disk asynchronously.

References
Introduction to Web Storage
HTML5 (Working Draft)
State and Storage

Further Reading

Document Object Model (DOM)
Wikipedia - Document Object Model
Wikipedia - Web storage

http://msdn.microsoft.com/en-us/library/ms535862(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms535862(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197063(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197016(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197016(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197047(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc288131(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/cc197062(v=vs.85).aspx
http://go.microsoft.com/fwlink/p/?linkid=203771
http://msdn.microsoft.com/en-us/library/hh781505(v=vs.85).aspx
http://www.w3.org/DOM/
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Web_storage

localStorage is not cookies
Mozilla Developer Network - DOM Storage
Web Storage: easier, more powerful client-side data storage
The DOM and 3rd Party Javascript Vulnerabilities
Running your web applications offline with HTML5 AppCache
Taking your web apps offline: A tale of Web Storage, Application Cache and WebSQL

http://blog.andyhume.net/localstorage-is-not-cookies/
https://developer.mozilla.org/en-US/docs/DOM/Storage?redirectlocale=en-US&redirectslug=DOM%3AStorage
http://dev.opera.com/articles/view/web-storage/
http://pooloferrors.com/the-dom-and-3rd-party-javascript-vulnerabilities
http://dev.opera.com/articles/view/offline-applications-html5-appcache/
http://dev.opera.com/articles/view/taking-your-web-apps-offline-web-storage-appcache-websql/

	Document Object Model Web Storage

